Inactivation and Removal of Murine Norovirus and Hepatitis A Virus on Fresh Raspberries by Ozone Gas Treatment

LOUTREUL J.1,2, MSSIAD H.1,2, CAZEAUX C.1,2, DENIS C.1,2, BERTRAND I.1,2,3, GANTZER C.1,2,3, BOUDAUD N.4,5

1. ACTALIA, Food Safety Department, Villers-Bocage, F-14310, France.
2. CRRS, LCPEM, Laboratoire de Chimie Physique et Microbiologie pour Environnement, UMR 7564, Nancy, F-54001, France.
3. Université de Lorraine, LCPEM, IMR 7564, Nancy, F-54001, France.
4 Corresponding author: n.boudaud@actalia.eu

INTRODUCTION
Since the last decade, human noroviruses and Hepatitis A virus (HAV) are currently recognized as the main foodborne pathogens. In 2012, the number of reported outbreaks caused in Europe by the pathogenic enteric viruses increased compared to the previous year (9.3% to 13.8%). Human noroviruses and HAV, transmitted by the fecal-oral route, are the main cause of non-bacterial gastroenteritis and enteric hepatitis, respectively. Occurrence of enteric viruses in red fruits is well known, as reported by the RASFF network and literature data. Due to their fragility, red fruits are rarely submitted to technological treatments after harvesting. Ozone (O₃), a strong oxidizing agent, has been widely used as disinfectant in drinking water treatment plants in Europe. Ozone gas seems to be the best candidate to potentially ensure the food safety of red fruits.

In this study, the virucidal impact of ozone gas has been investigated on fresh raspberries artificially contaminated by enteric viruses.

MATERIAL AND METHODS
Using the Murine Norovirus (MNV) and the HAV strain HM1/18/F (clone B) as current surrogates of pathogenic human noroviruses and HAV, the virucidal efficiency of ozone gas has been assessed as follows:
• Fresh raspberries samples of 25 g were independently spiked on the surface matrix with 100 µL of each viral stock solution at 2.0 x 10⁷ TCID₅₀ (for MNV) and 1.45 x 10⁸ PFU (for HAV). Ozone disinfection of samples was performed at different ozone concentration and contact time (three repetitions per condition), using a lab scale ozonisation unit designed by Alphatec Technologies (Figure 1).
• After ozone gas treatment, viruses were extracted from samples by elution-concentration method, as recommended by the ISO TS05 15216 standard.
• Viral inactivation and Log Nₐ were respectively determined with cell culture and RT-qPCR methods by calculating the log unit Nₐ, where Nₐ is the titer of virus recovered on the untreated sample and N₀ is the titer of virus recovered on the sample treated with ozone gas (three analyses per sample).

RESULTS AND DISCUSSION
• Better recovery of infectious particle and viral genome of HAV (> 50%) compared to MNV (< 1%) on surface of raspberries, using the extraction method recommended by the ISO TS05 15216 standard (Figure 2).
• Ozone gas is an effective technological treatment for inactivating MNV on raspberries (Figure 3). The viral genome of HAV is not affected by the oxidation effect of ozone gas under the conditions tested. RT-qPCR assays significantly underestimated the inactivation of MNV, compared with that measured by cell culture assays. These results are in agreement with Lim et al. (2010).
• Ozone gas used for the viral decontamination of HAV on raspberries is not efficient in terms of viral inactivation (< 0.6 log) and virus removal (< 0.2 log) under the conditions tested (Figure 4). These results indicate the resistance of HAV compared to MNV during ozone gas treatment. Resistance of infectious HAV to oxidizing agents like peroxyacetic-based biocide has been also described by Fraisse and their surrogates will be investigated in order to accurately assess the virucidal effectiveness of ozone treatment.

CONCLUSION
Ozone gas may be considered as an useful and innovative technological treatment for the viral decontamination of fresh raspberries (fragile fruit). Further research is underway to ensure at least 4.0 log HAV inactivation, especially by increasing ozone concentration and contact time.

From a fundamental viewpoint, mechanisms involved in the loss of infectivity for enteric viruses and their surrogates will be investigated in order to accurately assess the virucidal effectiveness of ozone treatment.

REFERENCES

ACKNOWLEDGMENTS
This study was funded by the DRAAF “Direction Régionale Alimentation Agriculture Forêt” of Rhône-Alpes. This study was also supported by the UMT ACTALIA “Unité Mixte Technologique” Virocontrol and the TERRALIA competitiveness cluster. The authors would like to thank the agro-industrial partner for its active collaboration.